
A note on the limiting procedures for path integrals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 035306

(http://iopscience.iop.org/1751-8121/41/3/035306)

Download details:

IP Address: 171.66.16.149

The article was downloaded on 03/06/2010 at 07:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/3
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 035306 (13pp) doi:10.1088/1751-8113/41/3/035306

A note on the limiting procedures for path integrals

V V Smirnov

Faculty of Physics, Saint Petersburg State University, 198504, St Petersburg, Russia

Received 1 August 2007, in final form 23 November 2007
Published 4 January 2008
Online at stacks.iop.org/JPhysA/41/035306

Abstract
Limiting procedures for the Feynman type path integral are considered.
The evolution operator is approximated with operators corresponding to the
exponential of the Hamiltonian’s symbol. The proof of convergence uses
Chernoff’s theory and its extension on the class of stable operators. The
approach is especially adequate for the generalized coherent states path integral,
where decomposition of a Hamiltonian into the sums used in the approach based
on Trotter’s formula may be unnatural.

PACS numbers: 03.65.−w, 03.65.Ca, 02.90.+p

1. Introduction

There are several approaches to the rigorous definition of a real-time Feynman path integral
[1–12]. One of them is based on a limiting procedure for finite-dimensional approximations.
Such a treatment gives a possible way to bypass the problems of measures in the space of
continual paths. It is rather useful for many practical purposes. The conventional proof
of convergence for the limiting procedure uses Trotter’s formula or its generalizations [1–4,
13–16]. It utilizes decomposition of the Hamiltonian into the sums.

In many cases such a decomposition is artificial and may not be adequate for the
natural structure of a Hamiltonian. This justifies an interest in approaches which need no
decomposition. Decomposition can be discarded within Chernoff’s theory [17]. In the present
paper, we consider this approach and extend it on the class of stable operators. A treatment is
based on the concept of operator’s symbols [18–23]. The approach is especially adequate to
the generalized coherent states path integrals [24–27].

2. Approximation of the evolution operator

We assume a one-to-one correspondence between operators and their symbols

�

A
CP−−−−−→ A.
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We use (if not stated otherwise) the same letter for the operators and their symbols. It is also

assumed that the product of operators
�

A · �

B corresponds to the convolution of symbols being
correspondingly defined as

�

A · �

B
CP−−−−−→ A ∗ B.

Such a correspondence often takes place in the theory of pseudo-differential operators and
the related context [5, 18–23]. It naturally occurs in the generalized coherent states technique
[18]. For convenience, the exact forms of correspondence for some conventional systems of
symbols are presented in the appendix.

Let
�

Ut = exp(−it
�

H) (1)

be the evolution operator on the time interval [0,∞) (h̄ = 1).

Let us introduce the operator
�

Wt corresponding to the symbol of the form

Wt = exp(−itH), (2)

where H is Hamiltonian’s symbol. It is assumed that
�

H ,
�

Ut belongs to the domain and Wt to
the range of CP.

Limiting procedures for the Feynman type path integral considered below are based on
the formula

�

Ut = lim
l→∞

�

W
l

�t , �t = t

l
; (3)

the limit is taken in the strong operator topology. In this section, we consider the proof of
equation (3).

First, under certain conditions Chernoff’s theory [17] can be used. Suppose that operators
�

Wt are strongly continuous and contractive on time interval t ∈ [0,∞), that
�

W 0 = �

1 and

that d
�
Wt

dt
(0) = −i

�

H defines strongly continuous and contractive semigroup equation (1). All
operators are considered on some Banach space. Then equation (3) is valid according to
Chernoff’s theorem [17].

Chernoff’s theory and hence equation (3) can be extended on a more general class of
stable operators. Let us consider this assertion.

The stability condition for the family of operators
�

W�t on the Banach space is defined by
relation [13]

∃ α, β, τ > 0 ∀k > 0, �t ∈ [0, τ )
∥∥ �

Wk
�t

∥∥ � α · exp(βk�t). (4)

Let us consider first a special case of stable systems—the so-called proper systems of operators
[13].

Let us call bounded operator
�

T a proper one if all its positive powers are uniformly
bounded,

∃α � 1 ∀k > 0 ‖ �

T k‖ � α.

The system of operators
�

W�t is a proper one if all its operators are proper ones with the same
constant α, so that the condition of the form (4) with β = 0 is valid. The so-called proper
semigroup of operators is defined by relations [13]

�

S(t + s) = �

S(t)
�

S(s), t, s � 0,

lim
t→0

�

S(t) = �

I ,

‖�

S(t)‖ � α, t � 0.

(5)
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Chernoff’s theory (as well as Trotter’s) is based on the Laplace transform relation,
connecting the semigroup with its resolvent

Rλ(
�

�) = (λ
�

I − �

�)−1 =
∫ ∞

0
exp(−λt)

�

S(t) dt, λ > 0,

where

�

� = lim
t→0

1

t
(

�

S(t) − �

I)

is the infinitesimal generator of the semigroup. The resolvent of the proper semigroups for all
λ > 0 is bounded in norm [13]

‖Rλ(
�

�)‖ � α

λ
. (6)

Let us note that for contraction semigroups α = 1 in equation (6).
All proofs of Chernoff’s paper can be extended on the proper semigroups with minor

changes. In the proof of lemma 1, the bound condition (6) should be used for the norm of
resolvent, instead of that with ψ� ← 1, valid for contractions. In the proof of the proposition
it should be taken into account that as well as for contractions the proper semigroups are
uniformly bounded (equation (5)). It is easy to check that lemma 2 can be formulated as
follows:

• Let
�

T be a proper operator on Banach space X.

• Then exp(t (
�

T − �

I)) is a proper semigroup.

• For all x ∈ X and natural n we have ‖(exp(n(
�

T − �

I)) − �

T n)x‖ � α2n1/2‖( �

T − �

I)x‖.

Lastly extension of Chernoff’s theorem, based on proposition and lemma 2 looks like

• Suppose that
�

Wt is a strongly continuous and proper family of operators on time interval

t ∈ [0,∞), that
�

W 0 = �

1 and that d
�
Wt

dt
(0) = −i

�

H defines the strongly continuous and
proper semigroup equation (1).

• Then equation (3) is valid in the strong operator topology.

Extension to the stable operators can be achieved with the trick used in [13]—if
�

W�t is

a stable family of operators then the closely related family exp(−β�t) · �

W�t is a proper one.
This proves equation (3) for the class of stable operators.

Let us make some notes.

(I) In connection with the application to the path integral we consider in section 3 and
the appendix the case of covariant symbols. For the so-called contravariant symbols
convergence of formula similar to equation (3) in the strong operator topology was
considered in [22].

(II) Chernoff’s treatment essentially uses Trotter’s approach [13], based on the relation
between a semigroup and its resolvent. It is valid when the spectrum of the generators
does not lie on the positive imaginary semiaxis. An alternative treatment can use

other estimations of the residual
�

Ul
�l − �

Wl
�l . There are several works related to this

subject in the context of Trotter product formula including the ones with explicit error
estimations for some classes of generators [28–31]. The work [29] generalizes the results
of Chernoff’s theory [17] to the convergence in the operator-norm topology.

3
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Below are given simple sufficient conditions which lead to equation (3) (in operator-

norm topology). Let us assume that both families of operators
�

U�t ,
�

W�t are stable.
Taking into account an equality

�

Ul
�l − �

Wl
�l =

l−1∑
k=0

�

U�l
k(

�

U�l − �

W�l)
�

Wl−k−1
�l

and the stability condition (3) we have

∥∥ �

Ul
�l − �

Wl
�l

∥∥ �
l−1∑
k=0

∥∥ �

U�l
k(

�

U�l − �

W�l)
�

Wl−k−1
�l

∥∥ � l · α2 exp(βt)‖ �

U�l − �

W�l‖.

Performing an exponential expansion the residual
�

U�l − �

W�l can be written as

�

U�l − �

W�l =
∞∑

k=2

(i�t)k

k!
(

�

Hk −
︷︸︸︷
Hk ) = �t2 · �

��t , (7)

where
︷︸︸︷
Hk is an operator with a symbol Hk . The terms of the expansion may be

unbounded operators, so the expansion can be used only to find the form of equation (7)
in the case of strong operator topology. The expansion should be eliminated in the

treatment of the operator-norm convergence. An operator
�

��t should be directly defined

by the left-hand side of equation (7). Obviously,
�

��t is bounded and normalizable for
any 0 < �t < τ (as the left-hand side of equation (7)). Let us assume that for some

0 � γ < 1 the following value is finite M = sup�t∈(0,τ ) �tγ ‖ �

��t‖ < ∞. Then we
have ∥∥ �

Ul
�l − �

Wl
�l

∥∥ � Mα2�t1−γ t exp(βt)−−−−−→
l→∞

0.

This confirms operator-norm convergence in equation (3) under made assumptions. A
certain limitation of the assumption of finite M is the difficult to verify it [28–31]. For
some classes of operator’s symbols the derivation of equation (3) on the basis of equation
(7) was considered without the proof in [19].

(III) See how Trotter formula follows from equation (3). For example, let us consider a
Hamiltonian of the form

�

H = �

T +
�

V (8)

with
�

T = T (
�

p),
�

V = V (
�

q). (9)

This Hamiltonian is naturally to be considered in terms of qp-symbols equation (A.17).
Using their properties listed in the appendix it can be shown that in this special case we
have

�

W�t = exp(−i�t
�

V ) · exp(−i�t
�

T ),

so equation (3) turns into the conventional Trotter formula.

(IV) In expression (7) for the residual we have lim�t→0
�

��t = 1
2 (

︷︸︸︷
H 2 − �

H 2). For the
Hamiltonian of the form, equations (8) and (9), the right part of this equality can be

expressed through the commutator
�

H 2 −
︷︸︸︷
H 2 = [

�

T ,
�

V ].

4
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(V) Let us consider a simple example of the non-Hermitian Hamiltonian
�

H = ε
�

q
�

p

with the real parameter ε which is not of the type equations (8) and (9). Its
qp-symbol is H = εqp. For simplicity we consider the case of one dimension.
Using the formula for the convolution equation (A.19) it can be easily calculated as

(W�t ∗ ψ)(q) = ψ((1 − �tε)q), so ‖ �

W�t‖ = (1 − �tε)−1/2. Let us restrict operators

on the subspace where operator i
�

H is bounded, so that the semigroup equation (1) is

stable. For negative values ε < 0 operators
�

W�t are contractive and equation (3) is valid
according to Chernoff’s theory. Taking into account that

∃c, τ > 0 ∀0 � �t < τ (1 − �tε)−1/2 � exp(c|ε|�t)

operators
�

W�t are stable and equation (3) is valid for all real parameters ε according to
the extended theory.

3. A limiting procedure for Feynman-type path integrals

In this section, we consider prelimiting approximations and limiting procedures for a Feynman
path integral. The forms of results are well known maybe except for the general case, but using
operator’s symbols and the coherent states technique together with equation (3) leads to the
simple derivation and the proof of convergence valid for a more general class of Hamiltonians.
We include in consideration also a relatively less considered case of the fermionic coherent
states path integral. A relevant question but from another standpoint for some special cases of
operator’s symbols not using the generalized coherent states technique was considered in [5].

The existence of some relationship may be noted between definitions of a Feynman path
integral based on the limiting procedure and based on the concept of integrators in functional
spaces [7–9]. In contrast to the last approach the first one even does not appeal a priory to
the functional space of continual paths. At the same time prelimiting approximations have a
similar form to approximations, which can be obtained within the integrators technique for
some mappings from the space of continual paths into the spaces of finite dimension [7]. This
may be treated as implicit evidence of approximations convergence.

3.1. Generalized coherent states path integral

The lth power of operator
�

W�t corresponds to the lth power of convolutions of the operator’s
symbols W�t equation (A.5). We use notation W ∗n = W ∗ · · · ∗ W︸ ︷︷ ︸

n

. So we have the following

representation of the lth power of convolutions in the form of path integral in the space of
discrete paths

W ∗l
�t (α, β) = exp(−δ1�(α, β))

∫
exp(S(α̃)) dα̃, (10)

where

α̃ = (α0, . . . , αl) is a virtual path, α = αl, β = α0 are boundary conditions,

dα̃ =
l−1∏
k=1

dµ(αk) is a measure on the space of virtual paths,
(11)

S =
l−1∑
k=0

�Sk, �Sk = δ1�(αk+1, αk) − i�tH(αk+1, αk). (12)

5
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Equation (12) is the integral sum for the integral

S =
∫

id∗ d1� − idtH ,

where d1�(α, β) = ∂�(α,β)

∂α
dα is the differential 1-form on the space 2 and id∗ is pullback

of a diagonal map id :  → � ⊂ 2, so that id∗ d1�(α, α) is the differential 1-form on the
space .

As was often noted (for example [19, 27]) there are specific shifts in arguments of
functions, entering prelimiting forms of actions (equation (12) and further ones) which gives
rise to corresponding infinitesimal time shifts in correct forms of integrals in limit.

For the Hamiltonians satisfying considered in previous section conditions of equation (3)
validity we obtain following convergent limiting procedure for the generalized coherent states
Feynman path integral representation of the evolution operator’s symbol

Ut(α, β) = lim
l→∞

W ∗l
�t (α, β). (13)

So we have the following commutative diagram of the correspondence and Feynman
principles

�

H −−−→ �

Ut

CP ↓ ↓ CP

H −−−−−→
FP

Ut

,

where both the correspondence principle (CP) and the Feynman principle (FP) depend on the
choice of the generalized coherent states system and the arrows should be treated in the same
system.

Equations (10)–(13) can represent many other related values, for example, wavefunction’s
symbol, density operator’s symbol, evolution operator’s kernel, symbols of functions of
Hamiltonian, transition amplitude, scattering cross sections and so on.

3.2. A case of Kahlerian manifold

In the case of Kahlerian manifold  the general representation, equations (10)–(12), can be
written using convolution in the form (A.10) as [26]

W ∗l
�t (α

∗, β) = exp(−2Jδ∗F(α∗, β))

∫
exp(S(α̃)) dα̃, (14)

where α̃ = (α0, . . . , αl) is a virtual path with boundary conditions α = αl , β = α0 and

dα̃ =
l−1∏
k=1

dµ(αk) (15)

is a measure on the space of virtual paths with invariant measures equation (A.8),

S =
l−1∑
k=0

�Sk, �Sk = 2Jδ∗F(α∗
k+1, αk) − i�tH(α∗

k+1, αk). (16)

S is the integral sum for the classical Hamilton–Kahler action

S =
∫

2J∂∗F − idtH ,

where ∂∗F is the differential 1-form in the complexification of cotangent bundle on the
homogeneous space  [23].

6
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Let us note that a convolution written in another form (A.9) leads to a path integral over
generalized coherent states of the form presented in [27].

In the case of canonical group generalized coherent states with the Kahlerian phase space
 = Cn the representation, equations (14)–(16), can be written using equations (A.7), (A.12)
and (A.13) as

W ∗l
�t (α

∗, β) = exp(−(α − β)∗β)

∫
exp(S(α̃)) dα̃,

where

dα̃ =
l−1∏
k=1

dα∗
k ∧ dαk

(2π i)n
,

S =
l−1∑
k=0

�Sk, �Sk = �α∗
kαk − i�tH(α∗

k+1, αk), �α∗
k = α∗

k+1 − α∗
k ,

S is the integral sum for the classical Hamilton–Kahler action on flat the phase space  = Cn

S =
∫

dα∗ · α − idt H .

3.3. A case of Grassmann algebra

In the case of Grassmann symbols the Feynman path integral representation can be written
using equations (A.7), (A.12) and (A.13) as

W ∗l
�t (α

∗, β) = exp(−(α − β)∗β)

∫
exp(S(α̃)) dα̃, (17)

where α̃ = (α0, . . . , αl) are virtual paths in a set  of Grassmann algebra generators with the
boundary conditions

α = αl, β = α0

and integration over paths of Grassmann algebra generators (equation (A.14)) [20],

dα̃ =
l−1∏
k=1

dα∗
k dαk.

The Grassmann action has the form

S = SB − SO,

SB =
l−1∑
k=0

�Sk, �Sk = �α∗
kαk − i�tH(α∗

k+1, αk), �α∗
k = α∗

k+1 − α∗
k ,

SO = �t

l−1∑
k=0

H o(α∗
k+1, αk)�t

k∑
j=0

H o(α∗
j+1, αj ).

The term SO appears for the Hamiltonian with arbitrary Grassmann parity [25] since
Grassmann symbols are non-commutative in general case. For arbitrary Grassmann parity
elements A,B ∈ � one has

exp(A) exp(B) = exp(A + B + AoBo),

where A = Ae + Ao is separation on even—(e) and odd—(o) parts.

7
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SB is the integral sum for the Grassmann action of the form similar to the bosonic case.
The additional term SO is the integral sum for the integral

SO =
∫ t

0
dsHo(α∗

s , αs)

∫ s

0
dtHo(α∗

t , αt ).

The form of equation (17) for the fermionic Feynman path integral is similar to the bosonic
case except for a different form of the Grassmann action. Actions coincide in the case of even
Grassmann parity of the Hamiltonian symbol (Hamiltonian even by fermions). In the general
case specific additional term appears, which is nonlinear relative to the Hamiltonian and is not
local in time [25] (the explicit memory effect in the system).

3.4. A case of qp-symbols

The lth power of convolutions of the qp-symbols W�t equation (A.17) can be written with
equation (A.19) as

W ∗l
�t (q, p) =

∫
exp(iS(q̃, p̃)) dq̃ dp̃

q̃ = (q0, . . . , ql) p̃ = (p0, . . . , pl−1) virtual path

q = ql = q0, p = p0 boundary conditions,

dq̃ dp̃ =
l−1∏
k=1

dqk dpk

(2π)n
,

S =
l−1∑
k=0

�Sk, �Sk = �qkpk − �tH(qk+1, pk), �qk = qk+1 − qk.

(18)

where S is the integral sum for the classical Hamilton’s action.
This leads to the following limiting procedure for the phase-space Feynman path integral

representation of the evolution operator’s qp-symbol

Ut(q, p) = lim
l→∞

W ∗l
�t (q, p).

Similar considerations lead to the representation of the wavefunction’s
�

Uψ qp-symbol
equation (A.18)

〈q| �

Uψ = lim
l→∞

(
W ∗l

�t ∗ ψ
)
(q),

(
W ∗l

�t ∗ ψ
)
(q) =

∫
exp(iS(q̃, p̃))ψ(q0) dq̃ dp̃,

q̃ = (q0, . . . , ql) p̃ = (p0, . . . , pl−1)

q = ql final condition,

dq̃ dp̃ =
l−1∏
k=0

dqk dpk

(2π)n
.

(19)

In the case of the Hamiltonian of the form equations, (8) and (9), with the quadratic term
T (p) = p2

2m
the integrals (18) and (19) are the Gaussian integrals over variables p̃. Performing

8
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integration, for example, in the case of the integral (19) we obtain the Feynman path integral
representation of the wavefunction in the configuration space

〈q| �

Utψ = lim
l→∞

(
W ∗l

�t ∗ ψ
)
(q),

(
W ∗l

�t ∗ ψ
)
(q) =

∫
exp(iS(q̃))ψ(q0) dq̃,

q̃ = (q0, . . . , ql), q = ql final condition,

dq̃ =
l−1∏
j=0

C dqj , C =
( m

2π i�t

) n
2
,

S =
l−1∑
k=0

�Sk, �Sk = �t · (T (mvk) − V (qk+1)) , vk = �qk

�t
,

where S is the integral sum for the classical Lagrange action along the virtual path q̃.

4. Conclusions

A finite-dimensional approximation for some types of the path integral considered in this
paper uses an approximation of the evolution operator on a time slice with the operator
corresponding to the exponential of the Hamiltonian’s symbol. The proof of the path integral
approximations convergence to the evolution operator symbol uses equation (3), which may
be grounded on Chernoff’s theory and its extension to the class of stable operators. With
this formula Hamiltonian needs no decomposition into any sums as in the case of the Trotter
product formula. It is most adequate, for example, to the limiting procedure for the generalized
coherent states path integral, where such a decomposition is unnatural.

Appendix

A.1. General case

For convenience, some known facts about the generalized coherent states technique [18]
related to this paper are presented here. The system is associated with some irreducible
unitary representation of the group G. Generalized coherent states are parameterized by some
group homogeneous space 

|α〉 ∈ �, α ∈ ,

where � is the representation space. It is usually assumed to be normalized as 〈α | α〉 = 1.
An essential feature is resolution of unity

�

1 =
∫

|α〉〈α| dµ(α), (A.1)

where dµ(α) is the G-invariant measure on .
The so-called covariant symbols [18–23] are defined as follows:

A(α, β) = 〈α| �

A|β〉
〈α|β〉 . (A.2)

Often covariant symbols are defined only on  as A(α, α), but we need its extension

equation (A.2) on 2. The symbol of the product of operators
�

A · �

B is the convolution
of symbols of the factors, which with equations (A.1) and (A.2) can be written as

A ∗ B(α, β) = 〈α|β〉−1
∫

A(α, γ ) · B(γ, β)〈α | γ 〉〈γ |β〉 dµ(γ ). (A.3)

9
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Twice implementing resolution of unity we obtain the form of restoration of the operator by
its symbol

�

A =
∫

|α〉A(α, β)〈α|β〉〈β| dµ(α) dµ(β). (A.4)

Let us write the scalar product of coherent states in an exponential form as 〈α | β〉 =
exp(�(α, β)). Taking into account the normalizing condition of coherent states �(α, α) = 0
an exponential form of their scalar product can be written in terms of partial differences with
respect to the first argument δ1�(α, β) = �(α, β) − �(β, β) as

〈α|β〉 = exp(δ1�(α, β)),

and the convolution equation (A.3) can be written as

A ∗ B(α, β)=
∫

A(α, γ ) · B(γ, β) exp(δ1�(α, γ ) + δ1�(γ, β)− δ1�(α, β)) dµ(γ ). (A.5)

A more symmetric form uses both partial differences

δ2�(α, β) = �(α, α) − �(α, β), � = δ1 − δ2,

〈α |β〉 = exp
(

1
2��(α, β)

)
,

which yields the convolution written as

A ∗ B(α, β)=
∫

A(α, γ ) · B(γ, β) exp

(
1

2
��(α, γ ) +

1

2
��(γ, β) − 1

2
��(α, β)

)
dµ(γ ).

(A.6)

A.2. A case of Kahlerian manifold

An important special case is the group homogeneous space  having a structure of Kahlerian
manifold. In this case, the complex conjugate in the symbol definition (A.2) is used,

A(α∗, β) = 〈α| �

A|β〉
〈α | β〉 . (A.7)

For some groups and some of representations [18] the invariant measure in resolution of
unity and the scalar product of coherent states can be expressed with the Kahlerian metric
potential F(α∗, α) (and its extension F(α∗, β)) as follows,

dµ(α) = m(J ) · det

(
1

2π i

∂ 2F

∂ α∗∂ α

)
dα∗ ∧ dα,

〈α |β〉 = exp(2J · F(α∗, β) − J · F(α∗, α) − J · F(β∗, β)),

(A.8)

where J = 0, 1
2 , 1, . . . is the representation index and m(J ) = 2J + 1.

It is convenient to write the scalar product of coherent states in terms of Kahlerian metric
potential differences

δ∗F(α∗, β) = F(α∗, β) − F(β∗, β),

δF (α∗, β) = F(α∗, α) − F(α∗, β),

〈α | β〉 = exp(J · �F (α∗, β)), � = δ∗ − δ.

In these terms the convolution equation (A.3) can be written as (a special case of the general
form (A.6))

A ∗ B(α∗, β) =
∫

A(α, γ ) · B(γ, β)

× exp(J · (�F(α∗, γ ) + �F(γ ∗, β) − �F(α∗, β))) dµ(γ ), (A.9)

10
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or as (a special case of the general form (A.5))

A ∗ B(α∗, β) =
∫

A(α, γ ) · B(γ, β)

× exp(2J · (δ∗F(α∗, γ ) + δ∗F(γ ∗, β) − δ∗F(α∗, β))) dµ(γ ). (A.10)

In the case of canonical group coherent states (sometimes called Glauber or bosonic coherent
states) the Kahlerian manifold is flat  = Cn and the Kahlerian metric potential is F = α∗ ·α,
so that

dµ(α) = dα∗ ∧ dα

(2π i)n
, (A.11)

〈α |β〉 = exp

(
α∗β − 1

2
(α∗α + β∗β)

)
. (A.12)

A ∗ B(α∗, β) =
∫

A(α∗, γ ) · B(γ ∗, β) · exp((α − γ )∗ · (γ − β)) dµ(γ ). (A.13)

A.3. A case of Grassmann algebra

In the case of canonical super-group the generators
�

1,
�

a+,
�

a satisfy canonical anti-commutation
relations. Coherent states (sometimes called fermionic coherent states) |α〉 ∈ � are
parametrized by generators α ∈  (dim  = 2n) of Grassmann algebra � (dim � = 22n),
where n is a number of annihilation operators. The conventional representation space is Fock
space F for fermions. Fermionic coherent states introduced in [33] lie in its extension with
Grassmann algebra � = � ⊗C F . It is assumed that involution ∗ is defined on � [20], so that
generators are split into pair as

α = 1√
2
(ξ, iη) and α∗ = 1√

2
(ξ,−iη), (dim ξ = dim η = n).

Most formulae with fermionic coherent states have the form similar to the bosonic case.
The resolution of unity has the form (A.1) where

dµ(α) = dα∗ dα = in dξ dη, (A.14)

with integration over Grassmann algebra generators [20]. Coherent states are eigenfunctions
of canonical super-group generators (with provision for duality) with Grassmann eigenvalues

�

ak|α〉 = αk|α〉, 〈α|�

a+
k = 〈α|α∗

k .

Covariant symbols, the scalar product and the convolution of symbols are defined by formulae
exactly similar to the bosonic case—equations (A.7), (A.12) and (A.13), respectively. Symbols
are Grassmann algebra elements.

A.4. A case of qp-symbols

An operator’s qp-symbols (sometimes called left symbols) [18–22] can be treated in terms
resembling definition of the canonical group generalized coherent states symbols. Let(

�

q
�

p

)
= Q

(
�

a+

�

a−

)
, Q = 1√

2

(
1 1
i −i

)
, Q−1 = Q+

be a canonical transform of canonical group generators [18] yielding generators
�

1,
�

q,
�

p

satisfying canonical commutation relations in the form

∀j, k ∈ {1, . . . , n} [
�

qj ,
�

pk] = iδjk

�

1, [
�

1,
�

qj ] = [
�

1,
�

pj ] = �

0.

11
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The convensional representation in the space of states � is defined as
�

q = x ,
�

p = 1
i

∂
∂ x

.

Let us consider two systems of states—one in the canonical group representation space
and another in the dual space

|p〉 = exp(ixp) ∈ �, 〈q| = δ (x − q) ∈ �+,

with the phase-space point (q, p) ∈  = R2n as a parameter. It can be called a qp-system.
Let us note that in contrast to generalized coherent states the space � does not coincide with
its dual space �+.

The main features of the qp-system resembling the canonical group coherent states system
are as follows:

�

1 =
∫ |p〉〈q|

〈q|p〉
dq dp

(2π)n
resolution of unity (A.15)

This follows directly from the Fourier transform properties.

〈q|p〉 = exp(iqp) normalizing condition.

〈q|�

qk = 〈q|qk,
�

pk|p〉 = pk|p〉 (A.16)

where qp-states are eigenfunctions of canonical group generators (with provision for duality).
Using qp-states one can introduce operator’s qp-symbols as

A(q, p) = 〈q| �

A|p〉
〈q|p〉 . (A.17)

The function’s symbol coincides with the function’s value

〈q|ψ = ψ(q). (A.18)

For the operators being polynomial functions of generators
�

A = f (
�

q,
�

p) the qp-symbol can
be found after operators transform to the so-called qp-normal form—all

�

q on the left of all
�

p.
For normal operator A(q, p) = f (q, p) which is the consequence of equation (A.16).

The qp-symbol of the product of operators
�

A · �

B is the convolution of qp-symbols of the
factors, which has the form ((A.15) and (A.17) are used)

(A ∗ B)(q, p) =
∫

A(q, p′) · B(q ′, p) · exp(i · (q − q ′) · (p′ − p))
dq ′dp′

(2π)n
. (A.19)

Operators can be restored (with equations (A.15) and (A.17)) by their qp-symbols as

�

A =
∫ |p〉A(q, p′)〈q |p′〉〈q ′|

〈q|p〉〈q ′ |p′〉
dq dp

(2π)n

dq ′ dp′

(2π)n
.
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